Correlation of ¹³C Shifts with Substituent Parameters in 3,4-Diphenyl-1,2,5-oxadiazole 2-Oxides Substituted at the Para-Positions of Either or Both Phenyl Rings¹⁾

S. N. BALASUBRAHMANYAM,* N. RAJENDRAN, and D. K. SINGH Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India (Received November 16, 1988)

C-1', C-1", C-3, and C-4 ¹⁸C shifts in 3,4-di(4'-or/and 4"-X)phenyl-1,2,5-oxadiazole 2-oxides (3,4-diarylfurazan 2-oxides; three series: X=NMe₂, OMe, Me, Cl, H, and NO₂) were correlated vs. seven different divided substituent parameter sets. Results have implied that i) the C-3-C-4 bond does not transmit mesomeric effects efficiently; ii) no effects can be specifically attributed to the possibility that the C-3 aryl maintains a higher dihedral angle with respect to the furoxan ring than the C-4 aryl; iii) there appears to be a directionality to the propagation of localized π -polarization due to lesser ability of C=N(O) \rightarrow O to convey effects compared with C=N(O); and, iv) the furazan N-oxide ring, being generally an electron acceptor, transmits substituent effects nonlinearly.

Correlation of ¹³C shifts with nonresonance and resonance effects of substituents in the two series of furazan 2-oxides, **1** and **2**, was attempted with a view to examine the consequences of known or expected presence in them of the following features:

- a) There is delocalization of charge from the *N*-oxide oxygen towards C-3,²⁾ a fact made use of in assigning ¹³C shifts in the two series.³⁾
- b) Transmission of polar effects are different in series 1 and 2 (contrast with polar transmission in the disubstituted series 3 could be instructive).
- c) In the solution phases of systems 1 and 2, the 4-substituted phenyl, vicinal to N-oxide in the former,

1 : X' = Substituent ; X" = H

 $2: X^{I} = H; X^{II} = Substituent$

3: X' = X" = Substituent

 $(1-5,7:X,X',X''=NMe_2,OMe,Me,Cl,H,NO_2)$

maintains, on the average, a higher dihedral angle (θ) with the furazan ring than the similarly substituted phenyl, distant to N-oxide, in the latter; a parallel difference may persist between the two 4-substituted phenyls in series 3.

Assignment of chemical shifts to C-1', C-1", C-3, and C-4 in the three series 1-3 has been described;³⁾ in Table 1 are gathered the shifts of these carbons relative to those of corresponding carbons in 3,4-diphenyl-furazan 2-oxide 3e. The nature of correlation at these four centers in the three series was expected to provide information sufficient for the proposed assessments. The available substitution, however, fell short of the minimal basis requirement⁴⁾ in three respects. A carbonyl acceptor or even a CF_3 group could not be

Table 1. Chemical Shifts (δ/ppm) of C-1', C-1", C-3, and C-4 in the Furazan 2-Oxide Series 1, 2, and 3

Relative to Corresponding Carbons in 3,4-Diphenylfurazan

2-Oxide 3e^a)

		C-l'			C-1"	
	1	2	3	1	2	3
a -NMe ₂	-14.48	_	-13.49	0.59	$(-13.68)^{b}$) -12.53
b -OMe	-8.51	-0.06	-8.10	0.30	-7.78	-7.39
c -Me	-3.44	-0.22	-3.07	0.16	-2.91	-2.56
d -Cl	-1.93	-0.63	-2.07	0.20	-1.52	-1.65
e -H ^{c)}	\rightarrow	123.60	←	\rightarrow	126.98	←
$f -NO_2$	$(5.10)^{1}$	°)-1.21	5.24 -	-0.74	5.89	5.15
		C-3			C-4	
	1	2	3	1	2	3
a -NMe ₂	0.24		0.40	0.12	_	0.28
b -OMe	-0.04	-0.40	-0.25 -	-0.06	0.31	-0.25
c -Me	-0.13	0.13	-0.10	0.00	0.00	-0.09
d -Cl	-1.00	-0.51	-1.17	-0.19	-1.02	-1.17
e -H ^{c)}	\rightarrow	114.40	←	\rightarrow	156.28	←
$f -NO_2$	-1.42	-0.60	-1.09	-0.27	-1.86	-1.46

a) Adapted from Ref. 2; conditions of measurement have been detailed in this reference. b) Value obtained by extrapolation; see text. c) Shifts (δ /ppm; ex TMS) in 3,4-diphenylfurazan 2-oxide **3e**.

included because of difficulties encountered during attempted synthesis. The 4"-NMe2 system 2a, for the presence of which ¹H NMR evidence was available. was not formed in quantity sufficient for its ¹³C lines to be discernible in the spectrum of its mixture with the 4'-isomer la; the mixture could not be separated.³⁾ The line corresponding to C-1' was obscured by other lines in the ¹H-decoupled ¹³C spectrum of the 4'-NO₂ system If. Moreover, the range of variation in chemical shift attending change in substitution was quite small at certain centers, giving room to uncertainty in correlative significance corresponding to error in measurement of small chemical shift changes. There was, however, a possibility that effects of these shortcomings could be compensated to an extent if correlation were tested vs. several different divided substituent parameter sets. The expectation was that any overall trends or consistencies seen could provide means to consider apparent correlations as significant. It has turned out that differences among the correlation coefficients are real, even based on small changes in chemical shift.

A standard statistics library routine, which included in its output certain indices of correlation (correlation coefficient r and the F-test of variance⁵⁾), was used for carrying out the two-variable regression analyses. Data on the seven divided substituent parameter sets against which correlations were tested are listed in Table 2. Calculations, initially carried out with C-1' and C-1" shifts in series 3 showed good to very good correlation vs. all sets of Table 2 except set 3 (this set, developed⁴⁾ for electron-rich centers, could be inappropriate to C-1' and C-1" in furazan 2-oxides of type 3 which may be expected to be electron-deficient; see later discussion). Polar and resonance coefficients from the remaining sets were not dissimilar to those

Table 2. Substituent Parameter Sets Employed in the Present Paper in the Correlation of ¹³C Shifts in Various Series

Substituent	$\sigma_{\rm I}$	σ_{R}°	σ_{R}^{BA}	$\sigma_{ m R}^-$	σ_R^+	
NMe_2	0.06	-0.52	-0.83	-0.34	-1.75	
OMe	0.27	-0.45	-0.61	-0.45	-1.02	
Me	-0.04	-0.11	-0.11	-0.11	-0.25	
Cl	0.46	-0.23	-0.23	-0.23	-0.36	
Н	0.00	0.00	0.00	0.00	0.00	
NO_2	0.65	0.15	0.15	0.46	0.15	
Substituent	F	R.	$F_{\rm n}$	R_{n}	σ^*	σ^{r}
NMe_2	-0.097	-0.568	0.69	-3.81	0.82	-1.41
	0.00.	0.500	0.09	3.01	0.84	-1. 1 1
OMe		-0.500	0.09	-1.68	0.82	-0.94
OMe Me		-0.500		0.0-		
0 1.10	0.413 -0.052	-0.500	0.54	-1.68	0.52	-0.94
Me	0.413 -0.052	-0.500 -0.141	0.54 -0.01	-1.68 -0.41	0.52 -0.10	-0.94 -0.42
Me Cl	0.413 -0.052 0.69	-0.500 -0.141 -0.161	0.54 -0.01 0.72	-1.68 -0.41 -0.24	0.52 -0.10 1.05	-0.94 -0.42 0.00

Designation numbers of substituent parameter sets and references:

- 1. $\sigma_{\rm I}$, $\sigma_{\rm R}^{\circ}$;6) 2. $\sigma_{\rm I}$, $\sigma_{\rm R}^{\rm BA}$;6) 3. $\sigma_{\rm I}$, $\sigma_{\rm R}^{-}$;6) 4. $\sigma_{\rm I}$, $\sigma_{\rm R}^{+}$;6) 5. \mathscr{F} , \mathscr{R} ;7) 6. $F_{\rm n}$, $R_{\rm n}$;8)
- 7. $\sigma^*, \sigma^{r, 9}$

found, with the same sets, for C-1 and C-4, respectively, of para-substituted benzonitriles 4 and monosubstituted benzenes 5 with the same six substituents as in series 3 (cf. C-1', C-1" data in Table 3C with data in Table 4AB). Therefore, seeing small changes in coefficients as reflecting real differences in transmission of effects, when the three series 1, 2, and 3 are compared, appeared justified. However, in the next correlation, attempted with C-1' shifts in series 1 without a value for the NO2 substituted system 1f, the coefficients were found to diverge from those found for the "complete model series" of benzonitriles, monosubstituted benzenes or series 3 even though the quality of correlation had not deteriorated. Such a result could have flowed from any or all of the following reasons: i) the number of variables was too small and correlation (regression) coefficients are unstable to dropping any of them, especially the extreme ones, pertinent to NO₂ and NMe₂; ii) NO₂ was the only representative of groups that cause a positive shift (deshielding with respect to the H-system) at resonance-intensive centers; iii) numbers pertinent to NO2 are not good in any of the parameter sets (or somewhat better in some than in others); iv) nonlinear effects underlie changes in the regression coefficients, In a possible partial test, correlations were carried out with the "model series" dropping values pertinent to NO2 and NMe2, one at a time. Results gathered in Table 5 show that the wide divergences from coefficients obtained with the "complete set," found when NO₂ values are dropped, are not seen when NMe2 values are dropped, pointing to the possible importance of nonlinear effects. In any case, these results were taken as strong indication that the same set of extreme substituents (i.e. NMe₂ and NO₂) should be taken if one wished to compare correlation in different series, such as the three series of furazan 2oxides in the present instance.

A plot of C-1' shifts in series 1 against C-1" shifts in series 2 for the four substituents common to the two series (OMe, Me, Cl, and H) was found to be linear (Fig. 1; curve E) and it seemed valid to obtain the unavailable values (C-1' shift in system 1f and C-1" shift in system 2a) by extrapolation. Correlation parameters obtained by including these shift values form part of the listings in Tables 3A—3C. As regards the remaining centers, C-1', C-3, and C-4 in series 2, recalculations were carried out for the comparable centers in series 1 and 3, omitting the NMe2 values, and the resulting correlations are listed in Tables 6A—6C. Assessments that follow are predicated on effects perceived on both of these bases:

- i) Polar coefficients in series 2 seem significantly higher than in series 1 if centers C-1', C-1", C-3, and C-4 of series 2 are compared, in order, with C-1", C-1', C-4, and C-3 of series 1.
- ii) Polar coefficients at C-3 and C-4 of series 3 are similar to those at centers corresponding, respectively,

Table 3. Coefficients and Indices of Correlation of ¹³C Shifts in the Furazan 2-Oxide Series 1, 2, and 3

Carbon site	Substituent parameter set no. ^{a)}	$I^{ m b)}$	$R^{b)}$	$r^{\mathrm{b})}$	$F^{ m b)}$	Carbon site	Substituent parameter set no. ^{a)}	$I^{ m b)}$	$R^{b)}$	$r^{\mathrm{b})}$	F^{b}
A. Series 1							4	6.19	8.27	0.992	102.9
C-1'c)	1	5.65	23.22	0.978	33.4		5	3.21	20.44	0.989	70.5
	2	5.63	16.39	0.996	192.6		6	2.03	3.94	0.988	61.
	3	3.42	16.54	0.855	4.1		7	-1.68	8.66	0.997	290.3
	4	5.52	8.56	0.993	118.4	C Ci 9					
	5	2.78	21.25	0.987	59.5	C. Series 3	1	F 20	00.20	0.004	47
	6	1.54	4.01	0.987	57.3	C-1'	1	5.32	22.30	0.984	47.5
	7	-2.06	8.85	0.998	444.5		2	5.35	15.63	0.997	272.3
C 1"	,	0.00	1.10	0.000	220 C		3	3.01	16.19	0.871	4.
C-1"	1	-0.92	-1.19	0.998	330.6		4 5	5.28	8.11	0.990	76.
	2	-0.92	-0.82	0.997	280.6		5 6	2.62 1.58	20.33	$0.990 \\ 0.984$	77.: 44.
	3	-0.77	-0.91	0.952	14.8						
	4	-0.93	-0.41	0.984	45.0		7	-1.90	8.42	0.999	540.
	5	-0.51	-1.00		1721.4	C-1"	1	5.17	20.86	0.984	45.
	6 7	-0.49		0.990	73.3		2	5.19	14.65	0.998	382.9
	/	-0.16	-0.52	0.996	199.7		3	3.04	15.09	0.869	4.
C-3	1	-1.93	-1.00	0.973	26.9		4	5.12	7.61	0.991	88.
	2	-1.93	-0.71	0.977	32.7		5	2.58	18.98	0.990	74.0
	3	-1.81	-0.76	0.958	16.8		6	1.56	3.58	0.986	51.6
	4	-1.94	-0.35	0.969	23.7		7	-1.73	7.90	0.998	402.3
	5	-1.11	-0.74	0.969	23.7	C 2	1	1.00	0.50	0.012	7 1
	6	-1.11	-0.31	0.981	37.6	C-3	1	-1.82	-0.58	0.913	7.
	7	-0.58	-0.58	0.969	23.2		2	-1.77	-0.53	0.933	10.5
C 1	1		0.10		19.4		3	-1.90 -1.74	-0.17 -0.31	0.887 0.945	5.0
C-4	1	-0.43 -0.42		0.963 0.979	19. 4 33.9		4	-1.74 -1.07	-0.31 -0.39	0.945 0.926	12.0 9.1
	2 3				33.9 9.8		5 6	-0.90		0.926 0.922	
		-0.43		0.931			6 7				8.0
	4	-0.41		0.988	64.2		1	-0.46	-0.48	0.870	4.
	5	-0.26		0.980	36.9	C-4	1	-2.28	-0.65	0.979	34.8
	6	-0.21		0.972	26.2		2	-2.26	-0.50	0.986	52.6
	7	-0.10	-0.12	0.911	7.3		3	-2.27	-0.37	0.965	20.3
B. Series 2 ^{d)}							4	-2.25	-0.27	0.987	59.5
C-1"	1	6.27	22.57	0.982	41.8		5	-1.33	-0.37	0.977	32.2
	2	6.28	15.88	0.997	297.3		6	-1.26	-0.29	0.978	33.
	$\bar{3}$	4.01	16.25	0.869	4.6		7		-0.53	0.950	14.

a) Refer to Table 2. b) I: Polar or nonresonance coefficient; R: resonance coefficient; r: coefficient of correlation; F: F-test of variance. c) Correlation includes C-1' shift in the NO₂ system If obtained by extrapolation. d) Correlation includes C-1" shift in the NMe₂ system 2a obtained by extrapolation; correlation at the other centers, C-1', C-3, and C-4, not including shifts pertinent to the NMe₂ system, are given in Table 6.

in series 1 and 2 i.e. C-3 in series 1 and C-4 in series 2.

- iii) The polar coefficient at C-1" of series 2 is higher than either at C-1' of series 1 or at C-1' or C-1" of series 3.
- iv) The resonance coefficient at C-1' of series 1 is higher than at C-1" of series 2.
- v) Consistent with this is the resonance coefficient at C-1' being higher than at C-1" within series 3.
- vi) There appears to be little or no transmission of resonance information along C-3-C-4 in any of the systems.

Resonance Effects. Taking resonance effects first, it is seen that effects comparable to those at β -centers in 4-substituted styrenes^{4,11)} are not present at C-4 in series 1, at C-3 in series 2 or at C-3 or C-4 in series 3. This indicated near total lack of mesomeric communication between C-3 and C-4. Furazan 2-oxides are, presumably, not unlike other 5-membered heteroaromatics in having π -character highly localized¹²⁾

between centers 2-3 and 4-5. This proposition as well as that the C-3 and C-4 para-substituted phenyls maintain different θ 's was open to test by way of observations on the nature of changes in correlation of ^{15}N shifts in the three series. But constrained resources prevented procurement of enough ^{15}N enriched hydroxylamine hydrochloride to enable preparation³⁾ of ^{15}N enriched samples of the furazan N-oxides in amounts needed to measure required shifts accurately.

X-Ray crystallographic evidence has not decided the question whether the 3-phenyl normally maintains a higher θ than the 4-phenyl in 3,4-diphenylfurazan 2-oxide (**3e**) since it disclosed¹²⁾ considerable disorder in the crystalline phase of **3e**: the two phenyls exchange their respective θ 's of ca. 59 and 17° in about 16% of the molecules. Clearly, intracrystalline forces play a major role here since it had been reported earlier¹³⁾ that the equivalent phenyl groups in 3,4-diphenylfurazan (**6**) are rotated out of coplanarity with the

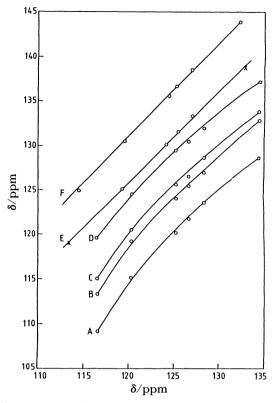


Fig. 1. Plots of ¹³C shifts of C-1' in series 1 (A), C-1" in series 2 (B) and C-1' and C-1" in series 3 (C and D, respectively) vs. C-4 shifts in monosubstituted benzenes for the series of substituents NMe2, OMe, Me, Cl, H, and NO₂. Plots E and F are, respectively, C-1' shifts in series 1 vs. C-1" shifts in series 2 and C-1' shifts vs. C-1" shifts in series 3. Points obtained by extrapolation (see text) are indicated by crosses in plot E. For clarity, plots have been displaced along the ordinate as follows: A and B 0, C and D +5, E +10 and F +15 δ (ppm) units while the values on the abscissa apply to all plots.

Table 4. Coefficients and Indices of Correlation of C-1 Shifts in 4-Substituted Benzonitriles^{a)} 4 and C-4 Shifts in Monosubstituted Benzenes^{a)} 5

Substituent parameter set no. ^{a)}	I	R	r	$F^{ m b)}$
A. Benzonitriles 4				·
1	6.47	24.43	0.977	32.5
2	6.44	17.28	0.996	232.2
3	4.16	17.34	0.855	4.1
4	6.31	9.04	0.995	155.9
5	3.34	22.24	0.986	56.2
6	1.87	4.28	0.990	76.4
7	-2.05	9.38	0.997	251.3
B. Benzenes 5				
l	6.06	20.93	0.995	185.3
2	6.21	14.40	0.994	140.6
3	3.49	15.93	0.913	7.6
4	6.25	7.34	0.976	30.6
5	3.04	18.88	0.996	215.2
6	2.58	3.55	0.970	24.1
7	-1.01	7.88	0.997	245.4

a) Chemical shifts reported in Ref. 10. b) Refer to Table 2. c) See footnote b of Table 3.

Table 5. Coefficients and Indices of Correlation of C-1' and C-1" Shifts in Furazan 2-Oxides 3, C-1 Shifts in 4-Substituted Benzonitriles 4, and C-4 Shifts in Monosubstituted Benzenes 5 on Omitting,

Substituent				b)
parameter	I	R	r	$F^{ m b)}$
set no. ^{a)}				
A. C-1' in furaz	an 2-oxide	es 3 with	out NO ₂ c)	
1	9.39	25.73	0.993	74.3
2	5.34	15.62	0.995	101.0
$\overline{3}$	14.25	31.75	0.910	4.8
4	2.28	7.64	0.996	141.2
5	3.48	21.11	0.986	35.2
6	-0.82	3.27	0.986	35.0
7	-2.14	8.18	0.998	266.0
D C 1//: (
B. C-1" in furaz				
1	9.07	24.16	0.992	68.3
2	5.27	14.70	0.996	143.6
3	13.60	29.73	0.907	4.7
4	2.39	7.19	0.997	233.2
5	3.43	19.77	0.986	34.5
6	-0.61	3.11	0.988	43.4
7	-1.96	7.71	0.997	178.5
C. C-1 in benzo	nitriles 4 v	vithout <i>p</i>	-nitrober	nzonitrile 4 1
1	11.96	29.04	0.991	55.1
2	7.40	17.68	0.995	108.9
3	17.33	35.57	0.902	4.4
4	3.94	8.67	0.998	311.3
5	4.79	23.58	0.984	31.6
6	-0.07	3.85	0.990	54.6
7	-2.03	9.40	0.994	96.1
D. C-1 in benzo	nitriles 4 v	vithout t	-(dimeth	vlamino)-
benzonitrile		· itiliout p	(aminem	, idiiiiio)
1	5.66	20.31	0.994	78.4
$\overset{ au}{2}$	6.23	16.06	0.996	152.1
$\overline{3}$	1.64	14.24	0.963	13.1
4	6.49	10.20	0.996	128.8
5	2.73	19.20	0.999	877.0
6	0.97	5.26	0.995	119.4
7	-1.40	8.51	0.999	694.8
E C 4 in 1		1		r
E. C-4 in benzen				
l o	8.02	22.59 13.65	0.997	232.3
2 3 .	4.45 12.52		0.994	91.7
		28.43	0.932	6.7
4	1.77	6.64	0.990	50.8
5	2.80	18.66	0.993	70.2
6 7	-0.70	2.82	0.974	18.9
1	-1.70	7.22	0.999	3579.1
F. C-4 in benzen				
1	5.77	19.53	0.998	298.6
2	6.36	15.26	0.993	66.1
3	1.82	13.88	0.979	23.0
4	6.61	9.65	0.988	41.2
5	2.91	18.61	0.995	106.5
6	1.24	4.98	0.989	45.8
7	-1.17	8.10	0.994	94.2
a) Refer to Tab	1- 0 1-) C-	- C 4	- 1 - C T	'-L1- 2 -\

system 3a, are given Table 6.

furazan ring to similarly different extents (61 and 19°). Still, it was considered possible that, because of Noxide oxygen-3-phenyl ortho-hydrogen crowding, the

Table 6. Coefficients and Indices of Correlation of ¹³C Shifts in Furazan 2-Oxide Series 1, 2, and 3 Omitting NMe₂

Carbon site	Substituent parameter set no. ^{a)}	I	R	r	$F^{\mathrm{b})}$	Carbon site	Substituent parameter set no. ^{a)}	I	R	r	$F^{ m b)}$
A. Series 1						C-3	1	-0.77	-0.33	0.910	4.8
C-1′	I	4.92	19.54	0.991	54.0		2	-0.77	-0.31	0.926	6.1
	2	5.47	15.45	0.993	80.1		3	-0.72	-0.20	0.897	4 . l
	3	1.07	13.65	0.958	11.1		4	-0.78	-0.20	0.927	6.1
	4	5.72	9.84	0.995	107.9		5	-0.45	-0.32	0.911	4.9
	5	2.29	18.56	0.998	317.6		6		-0.13	0.926	6.0
	6	0.58	5.04	0.993	76.2		7	-0.29	-0.14	0.928	6.3
	7	-1.61	8.23		1478.8	C-4	1		-1.95	0.975	19.1
C-1"	1	-0.91	-1.14	0.997	189.0		2		-1.62	0.988	40.5
	2	-0.94			1218.6		$\overline{3}$		-1.32	0.959	11.5
	3		-0.80	0.983	29.3		4	-2.41		0.987	38.4
	4	-0.95		0.998	225.8		5		-1.78	0.981	25.6
	5	-0.52	-1.03	0.999	6593.7		6	-1.21	-0.59	0.988	43.2
	6		-0.32	0.999	687.2		7		-0.80	0.984	30.1
	7	-0.19	-0.47	0.997	200.7	o o : •					
0.0	,					C. Series 3	,	4 77 1	10.04	0.000	111.0
C-3	1	-1.94		0.966	14.0	C-1'	1	4.71	19.24	0.996	111.8
	2	-1.96		0.977	21.2		2	5.26	15.14	0.995	93.0
	3	-1.75		0.956	10.7		3	0.87	13.55	0.968	15.1
	4	-1.97		0.976	20.4		4	5.51	9.60	0.992	69.4
	5	-1.14		0.968	15.3		5	3.53	18.40	0.997	172.8
	6	-1.07		0.977	21.5		6	0.54	4.92	0.993	67.7
	7	-0.70	-0.41	0.975	19.3		7	-1.62	8.04	0.998	279.9
C-4	1	-0.40	-0.07	0.992	61.6	C-1"	1	4.58	17.89	0.996	129.5
	2	-0.41	-0.07	0.994	88.0		2	5.09	14.10	0.997	157.6
	3	-0.40		0.989	48.7		3	1.00	12.61	0.969	15.7
	4	-0.41	-0.04	0.994	89.6		4	5.32	8.93	0.994	83.7
	5	-0.25		0.989	44.4		5	3.47	17.11	0.998	232.0
	6	-0.25	-0.04	0.992	68.4		6	0.63	4.59	0.995	96.8
	7	-0.20	-0.03	0.996	124.9		7	-1.41	7.47	0.998	245.3
B. Series 2						C-3	1	-1.73	-0.12	0.919	5.4
C-1′	l	-1.35	-0.93	0.961	12.1		2		-0.21	0.924	5.8
	2	-1.38	-0.76	0.967	14.5		3	-1.76	0.02	0.917	5.3
	3	-1.16	-0.68	0.960	11.9		4	-1.72	-0.15	0.926	6.0
	4	-1.39	-0.46	0.959	11.5		5	-1.02	-0.15	0.903	4.4
	5	-0.81	-0.79	0.963	12.8		6	-1.03	-0.14	0.914	5.1
	6	-0.74	-0.28	0.969	15.8		7	-0.77	-0.06	0.941	7.7
	7	-0.45	-0.36	0.952	9.9	C-4	1	-2.25	-0.48	0.977	21.2
C-1"	1	5.60	19.16	0.996	123.7	~ •	2		-0.45	0.982	27.6
٠.	2	6.15	15.10	0.996	132.1		$\frac{1}{3}$	-2.19		0.972	17.3
	3	1.77	13.49	0.970	16.0		4	-2.26		0.984	31.1
	4	6.40	9.57	0.994	84.4		5	-1.34		0.971	16.6
	5	2.76	18.00	0.999	382.4		6	-1.33		0.977	21.5
		1.11	4.94	0.995	90.6		7		-0.19	0.990	48.8
	6	1.11									

a) Refer to Table 2. b) See footnote b of Table 3.

C-3 aryl would maintain, on the average, a higher θ than C-4 aryl in the solution phases of systems **1**—3. Centers C-1' and C-1" can then be compared with C-1 centers in 4-substituted α -t-butylstyrenes (**7c**) and 4-substituted styrenes (**7a**), respectively. In these styrenes, increase in resonance transmission to C-1 on proceeding from **7a** to **7c** (Table 7) has been attributed to the isolation of the resonance effect at C-1 as θ increases; ¹¹⁾ there is also a small increase in polar transmission to C-1. ¹¹⁾ Resonance transmission to C-1' in series **1** and **3** is higher than to C-1" in series **3**, both

by about the same extent as it is higher at C-1 in 7c than in 7a. This can be taken as indicating that the C-3 aryl maintains a higher θ than the C-4 aryl. Higher polar transmission to C-1" in series 2, where the substituted phenyl is expected to have lower θ than the one in series 1, is, however, contrary to the situation in the styrenes. This does not detract from the case for higher θ on the part of the C-3 aryl since special circumstances govern polar transmission in furazan 2-oxides, as is hoped to be shown.

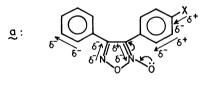
It is instructive to compare series 2 with the 2-substituted diazapentadienium (aminopropenimi-

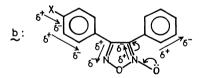
Table 7. Coefficients and Indices of Correlation of C-1 Shifts in 4-Substituted -H, -Me, and -t-Bu Styrenes 7a—c^{a)}

	Dtyrence			
Substituent parameter set no. ^{b)}	I	R	r	$F^{\mathrm{c})}$
A. Styrenes 7a				
1	5.42	19.58	0.996	167.4
2	5.55	13.49	0.996	185.7
$\frac{2}{3}$	3.05	14.84	0.910	7.2
4	6.24	9.68	0.991	82.8
4 5	2.70	17.70	0.997	225.9
6	2.23	3.31	0.971	25,3
7	-1.05	7.34	0.997	276.1
B. α-Methylstyrenes 7b				
l ·	5.80	20.35	0.994	137.9
2	5.92	14.05	0.996	215.3
2 3	3.38	15.34	0.906	6.9
4	6.64	10.08	0.991	87.0
5	2.90	18.41	0.997	242.2
6	2.37	3.46	0.974	27.3
7	-1.06	7.67	0.998	383.3
C. α-t-Butylstyrenes 7c				
1	6.24	20.74	0.998	369.0
	6.42	14.19	0.994	118.0
2 3	3.59	16.00	0.924	8.7
4	7.11	10.25	0.993	104.1
5	3.12	18.70	0.998	336.9
6	2.84	3.51	0.966	20.9
7	-0.77	7.79	0.996	197.9

a) Correlations based on C-1 chemical shifts reported¹¹⁾ for the 4-X-styrenes **7a**—c with X=NMe₂, OMe, Me, Cl, H, and NO₂. b) Refer to Table 2. c) See footnote b of Table 3.

Table 8. Coefficients and Indices of Correlation of C-1 and C-1' Shifts in the Aminopropeniminium salts 8^{a)}


Carbon site	Substituent parameter set no. ^{b)}	I	R	r	$F^{\mathrm{c})}$
C-1	1	-3.29	-1.94	0.995	140.3
	2	-3.35	-1.59	0.998	463.6
	3	-2.95	-1.35	0.987	56.7
	4	-3.38	-1.02	0.999	984.0
	5	-1.95	-1.80	0.995	148.7
	6	-1.14	-0.78	0.999	1388.0
	7	-1.16	-0.75	0.992	960.7
C-1'	1	5.62	19.12	0.993	101.0
	2	6.32	15.36	0.997	216.3
	3	2.01	13.80	0.974	21.9
	4	6.68	9.82	0.996	175.0
	5	2.82	17.73	0.995	141.5
	6	1.35	5.18	0.997	265.7
	7	-1.14	8.27	0.999	508.4


a) Correlations based on chemical shifts reported¹⁴) for C-1 and C-1' in series **8** for the set: X=OMe, Me, Cl, H, CN, and NO₂. b) Refer to Table 2. c) See footnote b of Table 3.

nium) salts 8 for which correlations at C-1 and C-1' vs. the seven parameter sets are given in Table 8 (13C shifts reported in Ref. 14 were used). The resemblances

that both polar and resonance transmissions at C-1' in series 8 bear to those at C-1" in series 2 (Table 6B) are striking. Persuasive arguments were advanced¹⁴⁾ as demonstrating that the 4-substituted phenyl stays at right angles to the diazapentadienium plane in series 8. Resemblances in correlation noted now show that the C-4 aryl should be taken as maintaining a high dihedral angle (ca. 90°) with the furazan oxide ring in series 2. This contradicts arguments advanced earlier as showing that the C-4 aryl maintains lower θ than the one at C-3 in series 1 or 3. Contradiction is resolved only if it is regarded that effects in series 2 and systems 8 have different bases. The lesser magnitude of the resonance coefficient at C-1" in series 2 compared with that at C-1' in series 1 as well as maintenance of a similar difference between C-1" and C-1' in series 3 could derive from a difference in onward transmission of mesomeric information. Such a difference could arise due either to the steric effect discussed above or to a directionality in the transmission of effects in furazan 2-oxides in the manner about to be described. In systems 8, on the other hand, opposing effects could be operative at C-1': decrease in the resonance coefficient at C-1', caused by the side chain retaining positive charge, is counteracted by increase due to the mesomeric effect being isolated at the same center. Similarity of the coefficient at C-1' in series 8 to that at C-1" in series 2 is, then, only coincidental.

Polar (Nonresonance) Effects. Observations noted under i)—iii), earlier, imply a directionality to the

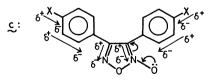


Fig. 2. Structural representations illustrative of conveyance of localized π-polarization (straight arrows) by an electron-repeller substituent X in the furazan 2-oxide series 1 (a), 2 (b), and 3 (c). The resident (mesomeric) delocalization from N-oxide oxygen to C-3 (curved arrows) may attenuate the ability of C-3-N-2(O)→O to convey polarization, either way, compared with C-4-N-5(O).

transmission of polar effects. Directionality can appear if the p-substituted phenyl maintains different θ 's in series 1 and series 2 and induces extended π -polarization⁴⁾ to different extents at the 4-substituted styrene β -centers', C-4 in series 1 and at C-3 in series 2. However, such cannot be the case since the sign of polarization at both centers is negative while that of extended polarization is positive⁴⁾ (whether extended polarization is active in systems like 1, 2, or 3, involving nitrogen atoms as styrene β -centers, remains to be tested).

It is known that placing a conjugative group at the β -center of a styrene can change the magnitude of the 'reverse' polar effect at the α -center. In 4-substituted chalcones, for example, the effect is a substantial increase in the magnitude of the polar coefficient at C- α (I=-4.0).⁴⁾ The effect seen in series 1 and 2 is no way comparable since the value of the polar coefficient at C-3 in series 1 is lower than and that at C-4 in series 2 just about the same as at C- α in 4-substituted styrenes 7 (I=-2.4;⁴⁾ cf. relevant entries in Tables 6A and 6B); furazan 2-oxides cannot, therefore, be regarded as β -azastyrenes with a conjugative substituent at the β -atom (nitrogen).

Directionality of the type seen can derive from a difference in the behavior of C-4-N-5(O) and C-3-N-2(O)→O moieties, which constitute the furazan 2oxide system, in transmitting a second type of polarization viz. localized π -polarization:⁴⁾ greater polarizability of the former can lead to greater localized effect at C-4 in series 2 or, lesser polarizability of the latter to lesser effect at C-3 in series 1 (see Fig. 2 and Tables 6A and 6B). This consideration is directly applicable to series 3 if the 'right' and 'left' sides of these systems are considered as resembling series 1 and 2, respectively. However, the effect transmitted onward to C-3 in series 2 is greater than that transmitted onward to C-4 in series 1. The difference could be only an apparent one since what is conveyed (inefficiently) by C-3-N- $2(O) \rightarrow O$ in series 2 is an effect that could be larger than that conveyed (efficiently) by C-4-N-5(O) in series 1. Lesser ability of the C-3-N-2(O)→O moiety to convey localized polarization effects may derive from an intervention by the resident (mesomeric) delocalization from the N-oxide oxygen to C-3 (Fig. 2; curved

Evidence of 'directionality' to the transmission of polar effects is seen in the isomeric phenylfurazan 2-oxides **9a** and **9b** in which the varying substituent is

(X = NMe₂, NH₂, Me, SPh, Ph, Cl, H, NO₂)

Table 9. Coefficients and Indices of Correlation of C-1' Shifts in 3-Phenyl-4-X-furazan 2-Oxides **9a** and C-1" Shifts in 3-X-4-phenylfurazan 2-Oxides **9b**^a)

~		,			
Carbon site	Substituent parameter set no. c)	I	R	r	$F^{ m d)}$
A. Series 9)a				
C-1'b)	1	-4.17	-2.96	0.994	77.3
	2	-4.21	-2.00	0.996	139.3
	3	-3.87	-2.14	0.962	12.4
	4	-4.27	-0.99	0.996	126.4
	5	-2.46	-2.09	0.996	133.2
	6	-2.29	-0.78	0.995	108.7
	7	-1.01	-1.68	0.997	168.6
B. Series 9)b				
C-1"b)	1	-3.35	-1.32	0.992	59.7
	2	-3.38	-0.86	0.990	51.7
	3	-3.18	-1.01	0.981	25.8
	4	-3.41	-0.42	0.990	49.1
	5	-2.03	-0.59	0.988	42.6
	6	-1.92	-0.47	0.989	46.0
	7	-0.99	-0.99	0.996	128.6

a) Correlations based on chemical shifts reported¹⁵⁾ for C-1' in series **9a** and C-1" in series **9b** for the set: X=NMe₂, NH₂, Me, Ph, SPh, Cl, H, and NO₂. b) This numbering conforms with that in furazan 2-oxides 1, 2, or 3. c) Refer to Table 2. d) See footnote b of Table 3.

directly on the furazan oxide ring¹⁵⁾ (cf. polar coefficients at C-1' in **9a** with those at C-1" in **9b**; Table 9).

An interesting further observation is that 'ipso' centers of the phenyl groups, C-1" in series 1 and C-1' in series 2, exhibit polar coefficients of higher magnitude than centers nearer the sites of substitution, C-4 in series 1 and C-3 in series 2, to which they are respectively bonded. A reason could be that phenyl groups are more easily polarized (as a whole, by the localized mechanism) than C-3-C-4 bonds in furazan 2-oxide rings, to which only a minor degree of double-bond character can be attributed ("30%" according to Ref. 12).

Nonlinear Effects. Plots of C-1' shifts in series 1 (Fig. 1; curve A), C-1" shifts in series 2 (curve B) and C-1' and C-1" shifts in series 3 (curves C and D) vs. C-4 shifts in monosubstituted benzenes with the same set of substituents are depicted in Fig. 1 (with shifts referred to TMS=0 ppm). These plots show distinct curvature in comparison with a plot either of C-1' shifts in series 1 vs. C-1" shifts in series 2 (curve E) or of C-1' shifts vs. C-1" shifts in series 3 (curve F). The gradual transition from higher to lower slope as the substituent changes from electron donor to electron acceptor contrasts with clear bilinearity exhibited by a plot of C-1 shifts in para-substituted nitrobenzenes vs. C-4 shifts in monosubstituted benzenes (Fig. 1 of Ref. The contrast may be taken as evidence that the furazan 2-oxide system responds in nonabrupt manner and only reluctantly to change from electron release to electron withdrawal. The sense of the change indicates that furazan 2-oxide systems are electron acceptors. It remained to be tested whether a C-4 substituent is depleted of electron density to a greater extent than one at C-3 on the account that delocalization from *N*-oxide oxygen enhances electron density at C-3 considerably. A symptom of the difference between the two locations is that C-3 shifts are about 40 ppm lower than C-4 shifts in all furazan 2-oxides³) (Table 1). An effect is also apparently conveyed (σ -inductively?) to C-1' and C-1" of the para-substituted phenyls: C-1' carbons in series 1 are shifted upfield of C-1" carbons in series 2 about 4 ppm,³) as seen from Fig. 1 curves A and B (cf. curves C and D pertinent to series 3).

Tests of nonlinear transmission of effects were possible:

a) The dual substituent parameter-nonlinear resonance (DSP-NLR) treatment¹⁰⁾ offered one possibility and was applied to C-1' and C-1" shifts in series 3 for each member of which measured shifts were available for the two centers. The values of the "electron demand parameter", ε , obtained by applying iterative procedure to Eq.1:

$$\Delta \delta = \sigma_{\rm I} \rho_{\rm I} + \sigma_{\rm R}^{0} \rho_{\rm R} / (1 - \varepsilon \sigma_{\rm R}^{0}), \tag{1}$$

were -0.44 and -0.49, respectively. While the negative signs confirmed that both centers are depleted of electron density, the difference in magnitude indicated that the C-3 substituent is less affected than the C-4 substituent, as expected. The electropositivity at C-3 of the furazan 2-oxide system, which can be considered as a net effect, is still within the range set by CF₃ ($\varepsilon = -0.42$) and COMe ($\varepsilon = -0.49$).¹⁰⁾

b) It was thought possible to obtain independent check on certain of these aspects by comparing the $|B|/|r^*|$ ratio at C-1' in series 1 and at C-1" in series 2 with those at corresponding centers in series 3. The ratio, which has been interpreted⁹⁾ as a measure of 'polarization' of a phenyl by such ' π -substituents' as CO₂H, CO₂R, or OH, can be obtained by carrying out regression analysis employing the three-parameter equation⁹⁾ (Eq. 2):

$$\Delta \delta = \rho^* \sigma^* + r^* \sigma^r + B \tag{2}$$

where *B* is a 'free' parameter used in conjunction with set 7. Since at least six values of the dependent variable were required in a three-parameter treatment, C-1' shift pertinent to system 1f and C-1" shift pertinent to

Table 10. Results of the Three-Parameter Correlation (Eq. 2) of C-1' Shifts in Series 1, C-1" Shifts in Series 2 and C-1' and C-1" Shifts in Series 3

Carbon center	$ ho^*$	r*	В	r	F	B / r*
C-1' in 1	-2.22	8.92	0.34	0.998	213.3	0.038
C-1" in 2	-2.06	8.83	0.84	0.998	184.6	0.095
C-1' in 3	-2.10	8.51	0.45	0.999	290.4	0.053
C-1" in 3	-2.08	8.06	0.77	0.999	311.6	0.096

system **2a**, both obtained by extrapolation as described earlier, had to be included in the calculations. Results gathered in Table 10, which show greater $|B|/|r^*|$ ratio at C-1" than at C-1', allow the interpretation that the furazan 2-oxide system exerts greater influence through C-4 than through C-3. This accords with the following two, not mutually exclusive, possibilities:

- i) A para-substituted phenyl at C-4 can exchange mesomeric information with the C-4-N-5 bond of the furazan 2-oxide system more effectively than can a similar group at C-3 with the C-3-N-2 bond because the former can maintain lower θ on the average (cf. earlier comparisons with para-substituted styrenes).
- ii) Electron release from the *N*-oxide oxygen towards C-3 attenuates passage of mesomeric information to and from the para-substituted phenyl at C-3, regardless of its conformation with respect to the furazan 2-oxide ring.

A way to disentangle one possibility from the other is not apparent at this time but possibility ii) appears to have greater weightage.

It is noteworthy that the three-parameter treatment also shows higher polar effect at C-1' (in series 1) than at C-1" (in series 2). This is consistent with the proposition that higher electron density in the phenyl or para-substituted phenyl placed at C-3 makes for greater ease of its polarization through nonresonance mechanisms, a proposition considered earlier in connection with polarization being higher at centers farther from the point of substitution than those nearer.

A Recent Suggestion. Recently, a view has been projected¹⁶⁾ that the concept that resonance effects complement polar effects, underlying all efforts hitherto undertaken to separate polar from resonance effects "cleanly", could be seriously flawed. observation that composite plots of electron-releasing and electron-withdrawing effects vs. any measurable property are bilinear must be seen as resulting from an abrupt major electronic rearrangement within a benzene ring when a π -donor substituent is replaced by a π -acceptor substituent, a rearrangement that must, naturally, affect transmission of polar effects. All hitherto employed dual parameter analyses which do not take into account this deep-seated coupling between polar and resonance effects must be regarded as misdirected. The earlier concept should be replaced by one that sees polar effects as modified by resonance.

Without taking a stand on this question, one can take the position that directionality to the conveyance of effects in substituted furazan 2-oxides, originating in the manner just discussed, could be a manifestation of the coupling between polar and resonance effects, since polar transmission seems to be considerably affected by delocalization from the *N*-oxide oxygen towards C-3, really a "resonance" effect. It is neces-

sary to point out, however, that the directionality has surfaced in spite of the use of parameter sets developed by authors working in light of the earlier concept.

References

- 1) Abstracted in part from the Ph. D. thesis (Indian Institute of Science; 1986) of N. Rajendran (present address: GTN Arts College, Dindukkal, Tamil Nadu 624004, India).
- 2) F. A. L. Anet and I. Yavari, *Org. Magn. Reson.*, **8**, 158 (1976).
- 3) S. N. Balasubrahmanyam and N. Rajendran, *Indian J. Chem.*, Sect. B, 27, 793 (1988).
- 4) D. J. Craik and R. T. C. Brownlee, "Substituent effects on chemical shifts in the side chains of aromatic systems," Chap. 1 in "Progress in Physical Organic Chemistry," ed by R. W. Taft, Wiley/Interscience, New York (1983), Vol. 14, pp. 1—73; basic information pertinent to the present paper is to be found in this review.
- 5) A. M. Neville and J. B. Kennedy, "Basic Statistical Methods for Engineers and Scientists," International Textbook Company, Pennsylvania (1964), Chap. 14, pp. 208—234; the ratio SD/RMS [= f; see S. Ehrenson, *J. Org. Chem.*, **44**, 1793 (1979)], that has been recommended^{4,6,10)} as a measure of quality of correlation, was not calculated.
- 6) S. Ehrenson, R. T. C. Brownlee, and R. W. Taft, "A Generalized Treatment of Substituent Effects in Benzene Series," Chap. 1 in "Progress in Physical Organic Chemis-

- try" Vol. 10, ed by A. Streitwieser and R. W. Taft, Wiley/Interscience, New York (1973), pp. 1—80.
- 7) C. G. Swain and E. C. Lupton, *J. Am. Chem. Soc.*, **90**, 4328 (1968); also, C. Hansch, A. Leo, S. H. Unger, K. H. Kim, D. Nikaitani, and E. J. Lien, *J. Med. Chem.*, **16**, 1207 (1973).
- 8) C. G. Swain, S. H. Unger, N. R. Rosenquist, and M. S. Swain, J. Am. Chem. Soc., 105, 492 (1983); see C. G. Swain, J. Org. Chem., 49, 2005 (1984) and three immediately preceeding papers in this issue.
- 9) I. B. Afanas'ev, J. Chem. Soc., Perkin Trans. 2, 1984, 1589.
- 10) J. Bromilow, R. T. C. Brownlee, D. J. Craik, M. Sadek, and R. W. Taft, J. Org. Chem., 45, 2429 (1980).
- 11) G. K. Hamer, I. R. Peat, and W. F. Reynolds, *Can. J. Chem.*, **51**, 897, 915 (1973).
- 12) A. K. Sillitoe and M. M. Harding, *Acta Crystallogr.*, *Sect. B*, **34**, 2021 (1978); pertinent bond lengths in system **3e** are indicative: N-2-C-3 1.312, C-3-C-4 1.411, and C-4-N-5 1.316 Å.
- 13) M. Mellini and S. Merlino, Acta Crystallogr., Sect. B, 32, 1079 (1976).
- 14) S. N. Balasubrahmanyam and I. M. Mallick, Org. Magn. Reson., 19, 160 (1982).
- 15) R. Calvino, R. Fruttero, A. Gasco, V. Mortarini, and S. Aime, J. Heterocycl. Chem., 19, 427 (1982).
- 16) G. F. Fadhil and M. Godfrey, J. Chem. Soc., Perkin Trans. 2, 1988, 133.